9.4.2 Pressure^{M12}

9.4.2.2 The Earth's Atmosphere

The **gravitational attraction of the earth** holds the gases of the atmosphere mainly within 10 km of the earth's surface.

9.4.2.2.1 Atmospheric Pressure

Pressure is the term used to mean **force per unit area**.

Atmospheric pressure is the result of bombardment by rapidly moving air particles.

The pressure exerted by the air particles at the earth's surface is about 1 kg·cm⁻².

The **pressure acts in all directions** because the particles are travelling in all directions.

9.4.2.2.2 Measuring Air Pressure

The instrument used to measure air pressure is the **barometer**.

At **sea level**, the particle bombardment is such as to be able to support a **column of mercury** about 760 mm high. The air pressure is measured as 760 mm of mercury.

9.4.2.2.3 Air Resistance

Friction due to air reduces the net force acting on **falling bodies**. Hence their acceleration is affected to some degree. This is important for light objects with large areas or objects moving at ver high speeds.

9.4.2.3 Effects of Forces between Particles

In solid materials under **forces of strain** the forces between the particles of the material tend to restore them to their original position and provide the **stress** or **restoring force**.

Examples of important physical effects due to **inter-particle forces** and displayed by liquids is provided by the phenomena of **surface tension** and **capillarity**. These can be understood on the basis of the interplay of the **cohesive** and **adhesive** forces that enter.

9.4.2.4 Pressure in Liquids

Liquids transmit pressure.

Pressure due to a liquid depends on:

- the depth of the liquid
- its density

Osmotic pressure is a special case of pressure in liquids and plays a most important role in life processes.

9.4.2.5 Pressure Due to Solids

The **pressure** due to a **solid** depends on:

- the **weight-force** of the solid
- the **area** over which it acts

15-May-09

References

Holt Physics, Serway, R.A. and Faughn, J.S. (Holt, Rinehart and Winston, 2000) [ISBN 0-03-056544-8] Ch. 9

Work directly from text, with exercises:

- 9 Fluid Mechanics
- 9.1 Fluids and buoyant force
- 9.2 Fluid pressure and temperature
- 9.3 Fluids in motion
- 9.4 Properties of gases